Selective recovery of precious metals from e-waste

Because of the growing amount of disposed e-waste worldwide, there is an emerging need for clean small-scale technologies for recycling of this waste. The economic driving force for e-waste recycling is the recovery of precious metals like gold and silver.

Development of electrocatalysts and membranes for the cogeneration of electricity and valuable chemicals

A lot of economically valuable chemicals are obtained in industry through oxidation and reduction reactions. While many of these processes are highly exothermic, liberating energy as heat, they generally do not reach high energy efficiencies because most of this liberated energy cannot be recovered efficiently. Fuel cells offer the possibility to produce these chemicals through electrochemical reactions while converting the released energy into electricity, thus offering a clear advantage over the conventional production process.

Solvent extraction in membrane microcontactors: modeling, spacer structuring and applications

Microfluidic technology involves the manipulation of fluids (gas or liquid) in channels with
dimensions lower than 1 mm, typically between 10-100 μm. Over the past 25 years, it has
grown into a mature field. Because of the small channel dimensions, chemical process
operations like mixing, reactions, dosing, and analyses have acquired substantial efficiency
gains. However, one aspect remains underdeveloped: general techniques that enable
downstream processing.

Electrosynthesis as an environmentally friendly production method : A screening methodology towards upscaling

Organic electrosynthesis is a field within electrochemistry that concerns the synthesis of organic products using the electron as a redox agent instead of chemical reductants or oxidants. It offers several important advantages to conventional synthetic methods, such as mild process conditions as reactions can be carried out at ambient temperature and pressure, higher selectivity due to precise control of the reaction by control of the electrode potential, ability to produce unstable or hazardous reagents in situ and less generation of pollutants and waste streams

Influence of electrodeposited nanoparticles on the electrochemical halide reduction

Fundamental advances in energy conversion and storage which are full of vigor in meeting outfaces of some environmental phenomena such as waste water pollution and impact of fossil fuels are held by electrosynthesis. In the past decade organic electrosynthesis has become an interesting, versatile and environmental friendly alternative compared to classical organic synthesis.

New routes towards efficient electrocatalyst development

Electrocatalysis is the linchpin of several modern electrochemical applications ranging
from energy storage devices over electroanalytical sensors to organic electrosynthesis.
Over the past decades electrocatalysis has grown to be a full-fledged part of heterogeneous
catalysis, supported by state-of-the-art theoretical insights.