our mission
The core research goal within ELCAT lies in the development of state-of-the art electrochemical reactors and catalysts, with a view towards large-scale industrial development in the field of industrial electrification, in a green and sustainable way.
The core research goal within ELCAT lies in the development of state-of-the art electrochemical reactors and catalysts, with a view towards large-scale industrial development in the field of industrial electrification, in a green and sustainable way.
WHAT WE DO
In the domain of electrochemical reactor engineering ELCAT focuses on development and optimisation of electrochemical reactors. Investigations in this research domain require a combined approach of know-how on (1) reactor design, (2) electrochemical analysis techniques, (3) electrocatalysis and (4) electrochemical synthesis.
Electrochemistry allows for a manifold of reactions to proceed on a laboratory or industrial scale under ambient conditions. At the same time, it benefits from a relatively high energy efficiency and selectivity, which can be tuned towards the desired product by adapting the operating potential and/or the electrocatalyst. The major drawback of electrochemical activation is the large overpotential which is required for many of these processes. In order to reduce those large overpotentials, we thus need a well suited electrocatalyst.
Moving towards a decarbonized economy, the ambition to decouple industrial processes from fossil-fuel-derived energy sources will inevitably pass through the exploitation of renewable energy sources such as wind, water and sun. Chemical manufacturing is nowadays based on thermochemical processes which are highly energy-demanding, requiring large amounts of heat.
Research
OUR MOST RECENT ACTIVITIES
Photoelectrochemical conversion of CO2 to methanol.
Return Photoelectrochemical conversion of CO2 to methanol. 01/03/2021 – 28/02/2025 Researcher: MSc. Michele Del Moro The increasing anthropogenic emissions of greenhouse gases into the Earth’s atmosphere has caused a deterioration of natural phenomena over the past few years. CO2 is…
Studying the effect of up-scaling CO2-electrolyzers to industrial scale
By the combination of green, renewable energy and electrocatalysts (Cu, Sb, …) it is possible to electrochemically convert CO2 to usable chemicals and fuels, like carbon monoxide (CO), formic acid (HCOOH), etc. In which up-scaling is of paramount importance for the industry.
Reactor design optimizations for electrochemical CO2 reduction
The objective of my PhD within ELCAT is to further develop the electrochemical reactor design for CO2 reduction towards higher technology readiness levels. More research is needed to optimize design parameters such as channel dimensions besides ensuring long term stability.
CO2 reduction from amine solutions
The goal of this PhD is to develop a capture and utilization process where CO2 is directly converted from the amine capture solution to valuable products, simultaneously to the amine recycling.
Analytical assistance and consulting
Measuring chemical products is the cornerstone of solving production issues. With our experience in tailor made analyses we can help you gain more insight in to your (bio)-chemical processes. Our high end industry-standard tools such as ICP-MS, GC(-MS) and HPLC have already proven their efficacy in previous projects.
Electrochemical characterisation
Corrosion is one of the main causes of degradation in industrial installations. The ELCAT group can consult on this with a variety of electrochemical analysis tools such as impedance spectroscopy. Other services can be provided in the field of CO2 reduction, organic electrochemistry and electrochemical reactor engineering.
Separation processes
Designing an industrial separation process is virtual impossible without accurate physicochemical data of the chemical species involved. For complex separation processes it can also be highly beneficial to conduct trial separation runs in pilot scale equipment in order to test the validity of the design procedures. The ELCAT group can offer expertise on debottlenecking, physicochemical data measurements and pilot scale trial separation runs for third parties to facilitate easier scale-up of separation processes.