Ongoing

Electrocatalysis combined with in-situ transmission electron microscopy

The goal of this project is to perform an in-situ structural, morphological and compositional characterization of bimetallic electrocatalytic nanoparticles (NPs) both at the nanometer and the atomic scale. We will synthesize bimetallic NPs electrochemically and/or through colloidal chemistry, by tuning the ratio of different elements including Pt, Ni, Ag, Cu and Sn.

Reduction_Oxidation_Recycling (RedOxRed)

The project aims at providing a working use-case on the recovery of noble metals from production waste of electronics production sites, in order to increase resource efficiency through recycling and this through the development and validation of a small to medium scale and environmental-friendly chemical extraction process based on electrodeposition.

Quantitative in-situ structural, morphological and compositional characterization of bimetallic nanoparticles as a route towards innovative electrocatalysts

Return Quantitative in-situ structural, morphological and compositional characterization of bimetallic nanoparticles as a route towards innovative electrocatalysts September 2019 – August 2023 The goal of this project is to perform an in-situ structural, morphological and compositional characterization of bimetallic electrocatalytic nanoparticles (NPs) both at the nanometer and the atomic scale. We will synthesize bimetallic NPs …

Quantitative in-situ structural, morphological and compositional characterization of bimetallic nanoparticles as a route towards innovative electrocatalysts Lees verder »

Electron tomography combined with state-of-the-art electrochemistry to gain better insight into the role of the different components of the active layer in a CO2 electrolyzer

Renewable energy sources can offer a solution for excessive emissions of greenhouse gases and to the expected decrease in availability of fossil fuels in the near future. Both problems would find a common solution if we were able to develop energy-efficient processes to convert (low concentrated) CO2 streams into fuels and useful chemical products, ensuring a positive economic and environmental balance.

Innovative three-dimensional electron microscopy to boost the catalytic activity of core-shell nanostructures

Electron tomography has evolved into a state-of-the-art technique to investigate the 3 dimensional structure of nanomaterials, also at the atomic scale. However, new developments in the field of nanotechnology drive the need for even more advanced quantitative characterization techniques in 3 dimensions that can be applied to complex (hetero-)nanostructures.

Direct electron detector for soft matter TEM

Modern materials are made to perform a certain task very well at a low (energy) cost of production. This drive towards more efficient materials has shifted the attention from making e.g. the strongest material to making a sufficiently strong material at an acceptable use of natural resources.