Projects

Ongoing projects:

Up-scaling of the zero-gap CO2 electrolyzer.

In light of climate change, we started in 2018 with the IOF SBO STACkED project that aims at identifying the most optimal CO2 electrolyzer configuration. The results direct obtained from this project have in October 2019 led to the start of a patent application process with the De Clercq & Partners patenting agency to protect the CO2 electrolyzer configuration.

Process transformation CO2 to CO.

The aim of this project is to study, explore and develop various (catalytic) technologies for the production of CO as platform chemical via conversion of CO2. A technology assessment will subsequently be carried out to evaluate the potential of each technology, pinpointing promising strategies for further development and upscaling.

Intensification of CO2 capture processes

In order to limit the effects of global warming, introduction of CO2 capture technology is absolutely and urgently required. However, the high cost and technological limitations of available CO2 separation technologies restrict their successful and general industrial deployment in the CO2 capture and utilization (CCU) context.

In this short project, we aim at the development of new and more efficient, sustainable and economically viable CO2 capture and separation technology.

Reduction_Oxidation_Recycling (RedOxRed)

The project aims at providing a working use-case on the recovery of noble metals from production waste of electronics production sites, in order to increase resource efficiency through recycling and this through the development and validation of a small to medium scale and environmental-friendly chemical extraction process based on electrodeposition.

Quantitative in-situ structural, morphological and compositional characterization of bimetallic nanoparticles as a route towards innovative electrocatalysts

Return Quantitative in-situ structural, morphological and compositional characterization of bimetallic nanoparticles as a route towards innovative electrocatalysts September 2019 – August 2023 The goal of this project is to perform an in-situ structural, morphological and compositional characterization of bimetallic electrocatalytic nanoparticles (NPs) both at the nanometer and the atomic scale. We will synthesize bimetallic NPs electrochemically and/or through colloidal chemistry,…

Electron tomography combined with state-of-the-art electrochemistry to gain better insight into the role of the different components of the active layer in a CO2 electrolyzer

Renewable energy sources can offer a solution for excessive emissions of greenhouse gases and to the expected decrease in availability of fossil fuels in the near future. Both problems would find a common solution if we were able to develop energy-efficient processes to convert (low concentrated) CO2 streams into fuels and useful chemical products, ensuring a positive economic and environmental balance.

Innovative three-dimensional electron microscopy to boost the catalytic activity of core-shell nanostructures

Electron tomography has evolved into a state-of-the-art technique to investigate the 3 dimensional structure of nanomaterials, also at the atomic scale. However, new developments in the field of nanotechnology drive the need for even more advanced quantitative characterization techniques in 3 dimensions that can be applied to complex (hetero-)nanostructures.

Past projects: